

i

About the Tutorial

Sockets are communication points on the same or different computers to

exchange data. Sockets are supported by Unix, Windows, Mac, and many other

operating systems.

The tutorial provides a strong foundation by covering basic topics such as

network addresses, host names, architecture, ports and services before moving

into network address functions and explaining how to write client/server codes

using sockets.

Audience

This tutorial has been designed for everyone interested in learning the data

exchange features of Unix Sockets.

Prerequisites

Learning Sockets is not at all a difficult task. We assume that you are well

versed with the basic concepts of C programming.

Copyright & Disclaimer

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of

Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain,

copy, distribute or republish any contents or a part of contents of this e-book in

any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness or completeness of our website or its contents including this tutorial.

If you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

ii

Table of Contents

About the Tutorial ... i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer .. i

Table of Contents .. ii

1. WHAT IS A SOCKET? .. 1

Where is Socket Used? .. 1

Socket Types ... 1

What is Next? ... 2

2. NETWORK ADDRESSES .. 3

Address Classes ... 3

Subnetting .. 4

3. NETWORK HOST NAMES ... 5

The /etc/hosts File .. 5

4. ARCHITECTURE ... 6

Client Process.. 6

Server Process ... 6

2-tier and 3-tier architectures ... 6

Types of Server ... 7

How to Make a Client.. 7

How to Make a Server... 7

Client and Server Interaction .. 8

5. STRUCTURES ... 9

iii

sockaddr ... 9

sockaddr_in .. 9

in_addr ... 10

hostent ... 11

servent .. 12

Tips on Socket Structures .. 12

6. PORTS AND SERVICES .. 14

Example Ports and Services... 14

Port and Service Functions .. 15

7. NETWORK BYTE ORDERS ... 17

Byte Ordering Functions ... 17

Program to Determine Host Byte Order .. 18

8. IP ADDRESS FUNCTIONS .. 20

int inet_aton(const char *strptr, struct in_addr *addrptr) .. 20

in_addr_t inet_addr(const char *strptr) .. 20

char *inet_ntoa(struct in_addr inaddr) ... 21

9. CORE FUNCTIONS ... 22

The socket Function .. 23

The connect Function.. 24

The bind Function ... 24

The listen Function ... 25

The accept Function.. 26

The send Function .. 26

The recv Function ... 27

The sendto Function ... 27

iv

The recvfrom Function .. 28

The close Function .. 28

The shutdown Function .. 29

The select Function ... 29

10. HELPER FUNCTIONS .. 32

The write Function .. 32

The read Function ... 32

The fork Function ... 33

The bzero Function ... 33

The bcmp Function ... 34

The bcopy Function .. 34

The memset Function ... 34

11. SERVER EXAMPLES .. 36

Handle Multiple Connections .. 38

12. CLIENT EXAMPLES ... 42

13. SUMMARY ... 45

Port and Service Functions .. 45

Byte Ordering Functions ... 45

IP Address Functions ... 45

Socket Core Functions ... 46

Socket Helper Functions.. 47

Unix Socket

1

Sockets allow communication between two different processes on the same or

different machines. To be more precise, it's a way to talk to other computers

using standard Unix file descriptors. In Unix, every I/O action is done by writing

or reading a file descriptor. A file descriptor is just an integer associated with an

open file and it can be a network connection, a text file, a terminal, or

something else.

To a programmer, a socket looks and behaves much like a low-level file

descriptor. This is because commands such as read() and write() work with

sockets in the same way they do with files and pipes.

Sockets were first introduced in 2.1BSD and subsequently refined into their

current form with 4.2BSD. The sockets feature is now available with most

current UNIX system releases.

Where is Socket Used?

A Unix Socket is used in a client-server application framework. A server is a

process that performs some functions on request from a client. Most of the

application-level protocols like FTP, SMTP, and POP3 make use of sockets to

establish connection between client and server and then for exchanging data.

Socket Types

There are four types of sockets available to the users. The first two are most

commonly used and the last two are rarely used.

Processes are presumed to communicate only between sockets of the same type

but there is no restriction that prevents communication between sockets of

different types.

 Stream Sockets: Delivery in a networked environment is guaranteed. If

you send through the stream socket three items "A, B, C", they will arrive

in the same order - "A, B, C". These sockets use TCP (Transmission

Control Protocol) for data transmission. If delivery is impossible, the

sender receives an error indicator. Data records do not have any

boundaries.

 Datagram Sockets: Delivery in a networked environment is not

guaranteed. They're connectionless because you don't need to have an

open connection as in Stream Sockets - you build a packet with the

destination information and send it out. They use UDP (User Datagram

Protocol).

1. WHAT IS A SOCKET?

Unix Socket

2

 Raw Sockets: These provide users access to the underlying

communication protocols, which support socket abstractions. These

sockets are normally datagram oriented, though their exact characteristics

are dependent on the interface provided by the protocol. Raw sockets are

not intended for the general user; they have been provided mainly for

those interested in developing new communication protocols, or for

gaining access to some of the more cryptic facilities of an existing

protocol.

 Sequenced Packet Sockets: They are similar to a stream socket, with

the exception that record boundaries are preserved. This interface is

provided only as a part of the Network Systems (NS) socket abstraction,

and is very important in most serious NS applications. Sequenced-packet

sockets allow the user to manipulate the Sequence Packet Protocol (SPP)

or Internet Datagram Protocol (IDP) headers on a packet or a group of

packets, either by writing a prototype header along with whatever data is

to be sent, or by specifying a default header to be used with all outgoing

data, and allows the user to receive the headers on incoming packets.

What is Next?

The next few chapters are meant to strengthen your basics and prepare a

foundation before you can write Server and Client programs using socket. If you

directly want to jump to see how to write a client and server program, then you

can do so but it is not recommended. It is strongly recommended that you go

step by step and complete these initial few chapters to make your base before

moving on to do programming.

Unix Socket

3

Before we proceed with the actual stuff, let us discuss a bit about the Network

Addresses — the IP Address.

The IP host address, or more commonly just IP address, is used to identify hosts

connected to the Internet. IP stands for Internet Protocol and refers to the

Internet Layer of the overall network architecture of the Internet.

An IP address is a 32-bit quantity interpreted as 48-bit numbers or octets. Each

IP address uniquely identifies the participating user network, the host on the

network, and the class of the user network.

An IP address is usually written in a dotted-decimal notation of the form

N1.N2.N3.N4, where each Ni is a decimal number between 0 and 255 decimal

(00 through FF hexadecimal).

Address Classes

IP addresses are managed and created by the Internet Assigned Numbers

Authority (IANA). There are five different address classes. You can determine

which class an IP address is in by examining the first four bits of the IP address.

 Class A addresses begin with 0xxx, or 1 to 126 decimal.

 Class B addresses begin with 10xx, or 128 to 191 decimal.

 Class C addresses begin with 110x, or 192 to 223 decimal.

 Class D addresses begin with 1110, or 224 to 239 decimal.

 Class E addresses begin with 1111, or 240 to 254 decimal.

Addresses beginning with 01111111, or 127 decimal, are reserved for loopback

and for internal testing on a local machine [You can test this: you should always

be able to ping 127.0.0.1, which points to yourself]; Class D addresses are

reserved for multicasting; Class E addresses are reserved for future use. They

should not be used for host addresses.

Example

Class Leftmost bits Start address Finish address

A 0xxx 0.0.0.0 127.255.255.255

2. NETWORK ADDRESSES

Unix Socket

4

B 10xx 128.0.0.0 191.255.255.255

C 110x 192.0.0.0 223.255.255.255

D 1110 224.0.0.0 239.255.255.255

E 1111 240.0.0.0 255.255.255.255

Subnetting

Subnetting or Subnetworking basically means to branch off a network. It can be

done for a variety of reasons like network in an organization, use of different

physical media (such as Ethernet, FDDI, WAN, etc.), preservation of address

space, and security. The most common reason is to control network traffic.

The basic idea in subnetting is to partition the host identifier portion of the IP

address into two parts:

 A subnet address within the network address itself; and

 A host address on the subnet.

For example, a common Class B address format is N1.N2.S.H, where N1.N2

identifies the Class B network, the 8-bit S field identifies the subnet, and the 8-

bit H field identifies the host on the subnet.

Unix Socket

5

Host names in terms of numbers are difficult to remember and hence they are

termed by ordinary names such as Takshila or Nalanda. We write software

applications to find out the dotted IP address corresponding to a given name.

The process of finding out dotted IP address based on the given alphanumeric

host name is known as hostname resolution.

A hostname resolution is done by special software residing on high-capacity

systems. These systems are called Domain Name Systems (DNS), which keep

the mapping of IP addresses and the corresponding ordinary names.

The /etc/hosts File

The correspondence between host names and IP addresses is maintained in a

file called hosts. On most of the systems, this file is found in /etc directory.

Entries in this file look like the following:

This represents a comments in /etc/hosts file.

127.0.0.1 localhost

192.217.44.207 nalanda metro

153.110.31.18 netserve

153.110.31.19 mainserver centeral

153.110.31.20 samsonite

64.202.167.10 ns3.secureserver.net

64.202.167.97 ns4.secureserver.net

66.249.89.104 www.google.com

68.178.157.132 services.amrood.com

Note that more than one name may be associated with a given IP address. This

file is used while converting from IP address to host name and vice versa.

You would not have access to edit this file, so if you want to put any host name

along with IP address, then you would need to have root permission.

3. NETWORK HOST NAMES

Unix Socket

6

Most of the Net Applications use the Client-Server architecture, which refers to

two processes or two applications that communicate with each other to

exchange some information. One of the two processes acts as a client process,

and another process acts as a server.

Client Process

This is the process, which typically makes a request for information. After

getting the response, this process may terminate or may do some other

processing.

Example, Internet Browser works as a client application, which sends a request

to the Web Server to get one HTML webpage.

Server Process

This is the process which takes a request from the clients. After getting a

request from the client, this process will perform the required processing, gather

the requested information, and send it to the requestor client. Once done, it

becomes ready to serve another client. Server processes are always alert and

ready to serve incoming requests.

Example: Web Server keeps waiting for requests from Internet Browsers and as

soon as it gets any request from a browser, it picks up a requested HTML page

and sends it back to that Browser.

Note that the client needs to know the address of the server, but the server does

not need to know the address or even the existence of the client prior to the

connection being established. Once a connection is established, both sides can

send and receive information.

2-tier and 3-tier architectures

There are two types of client-server architectures:

 2-tier architecture: In this architecture, the client directly interacts with

the server. This type of architecture may have some security holes and

performance problems. Internet Explorer and Web Server work on two-

tier architecture. Here security problems are resolved using Secure Socket

Layer (SSL).

 3-tier architecture: In this architecture, one more software sits in

between the client and the server. This middle software is called

4. ARCHITECTURE

Unix Socket

7

‘middleware’. Middleware are used to perform all the security checks and

load balancing in case of heavy load. A middleware takes all requests from

the client and after performing the required authentication, it passes that

request to the server. Then the server does the required processing and

sends the response back to the middleware and finally the middleware

passes this response back to the client. If you want to implement a 3-tier

architecture, then you can keep any middleware like Web Logic or

WebSphere software in between your Web Server and Web Browser.

Types of Server

There are two types of servers you can have:

 Iterative Server: This is the simplest form of server where a server

process serves one client and after completing the first request, it takes

request from another client. Meanwhile, another client keeps waiting.

 Concurrent Servers: This type of server runs multiple concurrent

processes to serve many requests at a time because one process may

take longer and another client cannot wait for so long. The simplest way

to write a concurrent server under Unix is to fork a child process to handle

each client separately.

How to Make a Client

The system calls for establishing a connection are somewhat different for the

client and the server, but both involve the basic construct of a socket. Both the

processes establish their own sockets.

The steps involved in establishing a socket on the client side are as follows:

 Create a socket with the socket() system call.

 Connect the socket to the address of the server using the connect()

system call.

 Send and receive data. There are a number of ways to do this, but the

simplest way is to use the read() and write() system calls.

How to Make a Server

The steps involved in establishing a socket on the server side are as follows:

 Create a socket with the socket() system call.

 Bind the socket to an address using the bind() system call. For a server

socket on the Internet, an address consists of a port number on the host

machine.

 Listen for connections with the listen() system call.

Unix Socket

8

 Accept a connection with the accept() system call. This call typically

blocks the connection until a client connects with the server.

 Send and receive data using the read() and write() system calls.

Client and Server Interaction

Following is the diagram showing the complete Client and Server interaction:

Unix Socket

9

Various structures are used in Unix Socket Programming to hold information

about the address and port, and other information. Most socket functions require

a pointer to a socket address structure as an argument. Structures defined in

this chapter are related to Internet Protocol Family.

sockaddr

The first structure is sockaddr that holds the socket information:

struct sockaddr{

 unsigned short sa_family;

 char sa_data[14];

};

This is a generic socket address structure, which will be passed in most of the

socket function calls. The following table provides a description of the member

fields:

Attribute Values Description

sa_family AF_INET

AF_UNIX

AF_NS

AF_IMPLINK

It represents an address family. In most of the

Internet-based applications, we use AF_INET.

sa_data Protocol-

specific

Address

The content of the 14 bytes of protocol specific

address are interpreted according to the type of

address. For the Internet family, we will use port

number IP address, which is represented

by sockaddr_in structure defined below.

sockaddr_in

The second structure that helps you to reference to the socket's elements is as

follows:

5. STRUCTURES

Unix Socket

10

struct sockaddr_in {

 short int sin_family;

 unsigned short int sin_port;

 struct in_addr sin_addr;

 unsigned char sin_zero[8];

};

Here is the description of the member fields:

Attribute Values Description

sa_family AF_INET

AF_UNIX

AF_NS

AF_IMPLINK

It represents an address family. In most of the

Internet-based applications, we use AF_INET.

sin_port Service Port A 16-bit port number in Network Byte Order.

sin_addr IP Address A 32-bit IP address in Network Byte Order.

sin_zero Not Used You just set this value to NULL as this is not being

used.

in_addr

This structure is used only in the above structure as a structure field and holds

32 but netid/hostid.

struct in_addr {

 unsigned long s_addr;

};

Here is the description of the member fields:

Unix Socket

11

Attribute Values Description

s_addr service port A 32-bit IP address in Network Byte Order.

hostent

This structure is used to keep information related to host.

struct hostent

{

 char *h_name;

 char **h_aliases;

 int h_addrtype;

 int h_length;

 char **h_addr_list

#define h_addr h_addr_list[0]

};

Here is the description of the member fields:

Attribute Values Description

h_name ti.com

etc.

It is the official name of the host. For example,

tutorialspoint.com, google.com, etc.

h_aliases TI It holds a list of host name aliases.

h_addrtype AF_INET It contains the address family and in case of Internet

based application, it will always be AF_INET.

h_length 4 It holds the length of the IP address, which is 4 for

Internet Address.

h_addr_list in_addr For Internet addresses, the array of pointers

h_addr_list[0], h_addr_list[1], and so on, are points

to structure in_addr.

Unix Socket

12

NOTE : h_addr is defined as h_addr_list[0] to keep backward compatibility.

servent

This particular structure is used to keep information related to service and

associated ports.

struct servent

{

 char *s_name;

 char **s_aliases;

 int s_port;

 char *s_proto;

};

Here is the description of the member fields:

Attribute Values Description

s_name http This is the official name of the service. For example,

SMTP, FTP POP3, etc.

s_aliases ALIAS It holds the list of service aliases. Most of the time this

will be set to NULL.

s_port 80 It will have associated port number. For example, for

HTTP, this will be 80.

s_proto TCP

UDP

It is set to the protocol used. Internet services are

provided using either TCP or UDP.

Tips on Socket Structures

Socket address structures are an integral part of every network program. We

allocate them, fill them in, and pass pointers to them to various socket

functions. Sometimes we pass a pointer to one of these structures to a socket

function and it fills in the contents.

Unix Socket

13

We always pass these structures by reference (i.e., we pass a pointer to the

structure, not the structure itself), and we always pass the size of the structure

as another argument.

When a socket function fills in a structure, the length is also passed by

reference, so that its value can be updated by the function. We call these value-

result arguments.

Always, set the structure variables to NULL (i.e., '\0') by using memset() or

bzero() functions, otherwise it may get unexpected junk values in your

structure.

Unix Socket

14

When a client process wants to connect to a server, the client must have a way

of identifying the server that it wants to connect. If the client knows the 32-bit

Internet address of the host on which the server resides, it can contact that

host. But how does the client identify the particular server process running on

that host?

To resolve the problem of identifying a particular server process running on a

host, both TCP and UDP have defined a group of well-known ports.

For our purpose, a port will be defined as an integer number between 1024 and

65535. This is because all port numbers smaller than 1024 are considered well-

known -- for example, telnet uses port 23, http uses 80, ftp uses 21, and so on.

The port assignments to network services can be found in the file /etc/services.

If you are writing your own server then care must be taken to assign a port to

your server. You should make sure that this port should not be assigned to any

other server.

Normally it is a practice to assign any port number more than 5000. But there

are many organizations who have written servers having port numbers more

than 5000. For example, Yahoo Messenger runs on 5050, SIP Server runs on

5060, etc.

Example Ports and Services

Here is a small list of services and associated ports. You can find the most

updated list of internet ports and associated service at IANA - TCP/IP Port

Assignments.

Service Port Number Service Description

echo 7 UDP/TCP sends back what it receives.

discard 9 UDP/TCP throws away input.

daytime 13 UDP/TCP returns ASCII time.

chargen 19 UDP/TCP returns characters.

ftp 21 TCP file transfer.

6. PORTS AND SERVICES

Unix Socket

15

telnet 23 TCP remote login.

smtp 25 TCP email.

daytime 37 UDP/TCP returns binary time.

tftp 69 UDP trivial file transfer.

finger 79 TCP info on users.

http 80 TCP World Wide Web.

login 513 TCP remote login.

who 513 UDP different info on users.

Xserver 6000 TCP X windows (N.B. >1023).

Port and Service Functions

Unix provides the following functions to fetch service name from the

/etc/services file.

 struct servent *getservbyname(char *name, char *proto) : This call

takes service name and protocol name, and returns the corresponding

port number for that service.

 struct servent *getservbyport(int port, char *proto) : This call takes

port number and protocol name, and returns the corresponding service

name.

The return value for each function is a pointer to a structure with the following

form:

struct servent

{

 char *s_name;

 char **s_aliases;

 int s_port;

 char *s_proto;

Unix Socket

16

};

Here is the description of the member fields:

Attribute Values Description

s_name http It is the official name of the service. For example, SMTP,

FTP POP3, etc.

s_aliases ALIAS It holds the list of service aliases. Most of the time, it will

be set to NULL.

s_port 80 It will have the associated port number. For example, for

HTTP, it will be 80.

s_proto TCP

UDP

It is set to the protocol used. Internet services are

provided using either TCP or UDP.

Unix Socket

17

Unfortunately, not all computers store the bytes that comprise a multibyte value

in the same order. Consider a 16-bit internet that is made up of 2 bytes. There

are two ways to store this value.

 Little Endian: In this scheme, low-order byte is stored on the starting

address (A) and high-order byte is stored on the next address (A + 1).

 Big Endian: In this scheme, high-order byte is stored on the starting

address (A) and low-order byte is stored on the next address (A+1).

To allow machines with different byte order conventions communicate with each

other, the Internet protocols specify a canonical byte order convention for data

transmitted over the network. This is known as Network Byte Order.

While establishing an Internet socket connection, you must make sure that the

data in the sin_port and sin_addr members of the sockaddr_in structure are

represented in Network Byte Order.

Byte Ordering Functions

Routines for converting data between a host's internal representation and

Network Byte Order are as follows:

Function Description

htons() Host to Network Short

htonl() Host to Network Long

ntohl() Network to Host Long

ntohs() Network to Host Short

Listed below are some more detail about these functions:

 unsigned short htons(unsigned short hostshort)

This function converts 16-bit (2-byte) quantities from host byte order to

network byte order.

 unsigned long htonl(unsigned long hostlong)

7. NETWORK BYTE ORDERS

Unix Socket

18

This function converts 32-bit (4-byte) quantities from host byte order to

network byte order.

 unsigned short ntohs(unsigned short netshort)

This function converts 16-bit (2-byte) quantities from network byte order

to host byte order.

 unsigned long ntohl(unsigned long netlong)

This function converts 32-bit quantities from network byte order to host

byte order.

These functions are macros and result in the insertion of conversion source code

into the calling program. On little-endian machines, the code will change the

values around to network byte order. On big-endian machines, no code is

inserted since none is needed; the functions are defined as null.

Program to Determine Host Byte Order

Keep the following code in a file byteorder.c and then compile it and run it over

your machine.

In this example, we store the two-byte value 0x0102 in the short integer and

then look at the two consecutive bytes, c[0] (the address A) and c[1] (the

address A+1) to determine the byte order.

#include <stdio.h>

int main(int argc, char **argv)

{

 union {

 short s;

 char c[sizeof(short)];

 }un;

 un.s = 0x0102;

 if (sizeof(short) == 2) {

 if (un.c[0] == 1 && un.c[1] == 2)

 printf("big-endian\n");

 else if (un.c[0] == 2 && un.c[1] == 1)

 printf("little-endian\n");

 else

Unix Socket

19

 printf("unknown\n");

 } else{

 printf("sizeof(short) = %d\n", sizeof(short));

 }

 exit(0);

}

An output generated by this program on a Pentium machine is as follows:

$> gcc byteorder.c

$> ./a.out

little-endian

$>

Unix Socket

20

Unix provides various function calls to help you manipulate IP addresses. These

functions convert Internet addresses between ASCII strings (what humans

prefer to use) and network byte ordered binary values (values that are stored in

socket address structures).

The following three function calls are used for IPv4 addressing:

 int inet_aton(const char *strptr, struct in_addr *addrptr)

 in_addr_t inet_addr(const char *strptr)

 char *inet_ntoa(struct in_addr inaddr)

int inet_aton(const char *strptr, struct in_addr *addrptr)

This function call converts the specified string in the Internet standard dot

notation to a network address, and stores the address in the structure provided.

The converted address will be in Network Byte Order (bytes ordered from left to

right). It returns 1 if the string was valid and 0 on error.

Following is the usage example:

#include <arpa/inet.h>

(...)

 int retval;

 struct in_addr addrptr

 memset(&addrptr, '\0', sizeof(addrptr));

 retval = inet_aton("68.178.157.132", &addrptr);

(...)

in_addr_t inet_addr(const char *strptr)

This function call converts the specified string in the Internet standard dot

notation to an integer value suitable for use as an Internet address. The

converted address will be in Network Byte Order (bytes ordered from left to

8. IP ADDRESS FUNCTIONS

Unix Socket

21

right). It returns a 32-bit binary network byte ordered IPv4 address and

INADDR_NONE on error.

Following is the usage example:

#include <arpa/inet.h>

(...)

 struct sockaddr_in dest;

 memset(&dest, '\0', sizeof(dest));

 dest.sin_addr.s_addr = inet_addr("68.178.157.132");

(...)

char *inet_ntoa(struct in_addr inaddr)

This function call converts the specified Internet host address to a string in the

Internet standard dot notation.

Following is the usage example:

#include <arpa/inet.h>

(...)

 char *ip;

 ip=inet_ntoa(dest.sin_addr);

 printf("IP Address is: %s\n",ip);

(...)

Unix Socket

22

This chapter describes the core socket functions required to write a complete

TCP client and server.

The following diagram shows the complete Client and Server interaction:

9. CORE FUNCTIONS

Unix Socket

23

The socket Function

To perform network I/O, the first thing a process must do is, call the socket

function, specifying the type of communication protocol desired and protocol

family, etc.

#include <sys/types.h>

#include <sys/socket.h>

int socket (int family, int type, int protocol);

This call returns a socket descriptor that you can use in later system calls or –1

on error.

Parameters

family: It specifies the protocol family and is one of the constants shown below:

Family Description

AF_INET IPv4 protocols

AF_INET6 IPv6 protocols

AF_LOCAL Unix domain protocols

AF_ROUTE Routing Sockets

AF_KEY Ket socket

This chapter does not cover other protocols except IPv4.

type: It specifies the kind of socket you want. It can take one of the following

values:

Type Description

SOCK_STREAM Stream socket

SOCK_DGRAM Datagram socket

Unix Socket

24

SOCK_SEQPACKET Sequenced packet socket

SOCK_RAW Raw socket

protocol: The argument should be set to the specific protocol type given below,

or 0 to select the system's default for the given combination of family and type:

Protocol Description

IPPROTO_TCP TCP transport protocol

IPPROTO_UDP UDP transport protocol

IPPROTO_SCTP SCTP transport protocol

The connect Function

The connect function is used by a TCP client to establish a connection with a TCP

server.

#include <sys/types.h>

#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

This call returns 0 if it successfully connects to the server, otherwise it returns -1

on error.

Parameters

 sockfd: It is a socket descriptor returned by the socket function.

 serv_addr: It is a pointer to struct sockaddr that contains destination IP

address and port.

 addrlen: Set it to sizeof(struct sockaddr).

The bind Function

The bind function assigns a local protocol address to a socket. With the Internet

protocols, the protocol address is the combination of either a 32-bit IPv4 address

Unix Socket

25

or a 128-bit IPv6 address, along with a 16-bit TCP or UDP port number. This

function is called by TCP server only.

#include <sys/types.h>

#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *my_addr,int addrlen);

This call returns 0 if it successfully binds to the address, otherwise it returns -1

on error.

Parameters

 sockfd: It is a socket descriptor returned by the socket function.

 my_addr: It is a pointer to struct sockaddr that contains the local IP

address and port.

 addrlen: Set it to sizeof(struct sockaddr).

You can put your IP address and your port automatically.

A 0 value for port number means that the system will choose a random port,

and INADDR_ANY value for IP address means the server's IP address will be

assigned automatically.

server.sin_port = 0;

server.sin_addr.s_addr = INADDR_ANY;

NOTE: All ports below 1024 are reserved. You can set a port above 1024 and

below 65535 unless they are the ones being used by other programs.

The listen Function

The listen function is called only by a TCP server and it performs two actions:

 The listen function converts an unconnected socket into a passive socket,

indicating that the kernel should accept incoming connection requests

directed to this socket.

 The second argument to this function specifies the maximum number of

connections the kernel should queue for this socket.

#include <sys/types.h>

#include <sys/socket.h>

Unix Socket

26

int listen(int sockfd,int backlog);

This call returns 0 on success, otherwise it returns -1 on error.

Parameters

 sockfd: It is a socket descriptor returned by the socket function.

 backlog: It is the number of allowed connections.

The accept Function

The accept function is called by a TCP server to return the next completed

connection from the front of the completed connection queue. The signature of

the call is as follows:

#include <sys/types.h>

#include <sys/socket.h>

int accept (int sockfd, struct sockaddr *cliaddr, socklen_t *addrlen);

This call returns a non-negative descriptor on success, otherwise it returns -1 on

error. The returned descriptor is assumed to be a client socket descriptor and all

read-write operations will be done on this descriptor to communicate with the

client.

Parameters

 sockfd: It is a socket descriptor returned by the socket function.

 cliaddr: It is a pointer to struct sockaddr that contains client IP address

and port.

 addrlen: Set it to sizeof(struct sockaddr).

The send Function

The send function is used to send data over stream sockets or CONNECTED

datagram sockets. If you want to send data over UNCONNECTED datagram

sockets, you must use sendto() function.

You can use write() system call to send data. Its signature is as follows:

int send(int sockfd, const void *msg, int len, int flags);

Unix Socket

27

This call returns the number of bytes sent out, otherwise it will return -1 on

error.

Parameters

 sockfd: It is a socket descriptor returned by the socket function.

 msg: It is a pointer to the data you want to send.

 len: It is the length of the data you want to send (in bytes).

 Flags: It is set to 0.

The recv Function

The recv function is used to receive data over stream sockets or CONNECTED

datagram sockets. If you want to receive data over UNCONNECTED datagram

sockets you must use recvfrom().

You can use read() system call to read the data. This call is explained in helper

functions chapter.

int recv(int sockfd, void *buf, int len, unsigned int flags);

This call returns the number of bytes read into the buffer, otherwise it will return

-1 on error.

Parameters

 sockfd: It is a socket descriptor returned by the socket function.

 buf: It is the buffer to read the information into.

 len: It is the maximum length of the buffer.

 flags: It is set to 0.

The sendto Function

The sendto function is used to send data over UNCONNECTED datagram sockets.

Its signature is as follows:

int sendto(int sockfd, const void *msg, int len, unsigned int flags,

 const struct sockaddr *to, int tolen);

This call returns the number of bytes sent, otherwise it returns -1 on error.

Unix Socket

28

Parameters

 sockfd: It is a socket descriptor returned by the socket function.

 msg: It is a pointer to the data you want to send.

 len: It is the length of the data you want to send (in bytes).

 flags: It is set to 0.

 to: It is a pointer to struct sockaddr for the host where data has to be

sent.

 tolen: It is set it to sizeof(struct sockaddr).

The recvfrom Function

The recvfrom function is used to receive data from UNCONNECTED datagram

sockets.

int recvfrom(int sockfd, void *buf, int len, unsigned int flags

 struct sockaddr *from, int *fromlen);

This call returns the number of bytes read into the buffer, otherwise it returns -1

on error.

Parameters

 sockfd: It is a socket descriptor returned by the socket function.

 buf: It is the buffer to read the information into.

 len: It is the maximum length of the buffer.

 flags: It is set to 0.

 from: It is a pointer to struct sockaddr for the host where data has to be

read.

 fromlen: It is set it to sizeof(struct sockaddr).

The close Function

The close function is used to close the communication between the client and the

server. Its syntax is as follows:

int close(int sockfd);

This call returns 0 on success, otherwise it returns -1 on error.

Unix Socket

29

Parameters

 sockfd: It is a socket descriptor returned by the socket function.

The shutdown Function

The shutdown function is used to gracefully close the communication between

the client and the server. This function gives more control in comparison to the

close function. Given below is the syntax of shutdown:

int shutdown(int sockfd, int how);

This call returns 0 on success, otherwise it returns -1 on error.

Parameters

 sockfd: It is a socket descriptor returned by the socket function.

 how: Put one of the numbers:

o 0: indicates that receiving is not allowed,

o 1: indicates that sending is not allowed, and

o 2: indicates that both sending and receiving are not allowed. When

how is set to 2, it's the same thing as close().

The select Function

The select function indicates which of the specified file descriptors is ready for

reading, ready for writing, or has an error condition pending.

When an application calls recv or recvfrom, it is blocked until data arrives for

that socket. An application could be doing other useful processing while the

incoming data stream is empty. Another situation is when an application

receives data from multiple sockets.

Calling recv or recvfrom on a socket that has no data in its input queue prevents

immediate reception of data from other sockets. The select function call solves

this problem by allowing the program to poll all the socket handles to see if they

are available for non-blocking reading and writing operations.

Given below is the syntax of select:

 int select(int nfds, fd_set *readfds, fd_set *writefds,

 fd_set *errorfds, struct timeval *timeout);

This call returns 0 on success, otherwise it returns -1 on error.

Unix Socket

30

Parameters

 nfds: It specifies the range of file descriptors to be tested. The select()

function tests file descriptors in the range of 0 to nfds-1

 readfds: It points to an object of type fd_set that on input, specifies the

file descriptors to be checked for being ready to read, and on output,

indicates which file descriptors are ready to read. It can be NULL to

indicate an empty set.

 writefds: It points to an object of type fd_set that on input, specifies the

file descriptors to be checked for being ready to write, and on output,

indicates which file descriptors are ready to write. It can be NULL to

indicate an empty set.

 exceptfds: It points to an object of type fd_set that on input, specifies

the file descriptors to be checked for error conditions pending, and on

output indicates, which file descriptors have error conditions pending. It

can be NULL to indicate an empty set.

 timeout: It points to a timeval struct that specifies how long the select

call should poll the descriptors for an available I/O operation. If the

timeout value is 0, then select will return immediately. If the timeout

argument is NULL, then select will block until at least one file/socket

handle is ready for an available I/O operation. Otherwise select will return

after the amount of time in the timeout has elapsed OR when at least one

file/socket descriptor is ready for an I/O operation.

The return value from select is the number of handles specified in the file

descriptor sets that are ready for I/O. If the time limit specified by the timeout

field is reached, select return 0. The following macros exist for manipulating a

file descriptor set:

 FD_CLR(fd, &fdset): Clears the bit for the file descriptor fd in the file

descriptor set fdset.

 FD_ISSET(fd, &fdset): Returns a non-zero value if the bit for the file

descriptor fdis set in the file descriptor set pointed to by fdset, and 0

otherwise.

 FD_SET(fd, &fdset): Sets the bit for the file descriptor fd in the file

descriptor set fdset.

 FD_ZERO(&fdset): Initializes the file descriptor set fdset to have zero

bits for all file descriptors.

The behavior of these macros is undefined if the fd argument is less than 0 or

greater than or equal to FD_SETSIZE.

Unix Socket

31

Example

fd_set fds;

struct timeval tv;

/* do socket initialization etc.

tv.tv_sec = 1;

tv.tv_usec = 500000;

/* tv now represents 1.5 seconds */

FD_ZERO(&fds);

/* adds sock to the file descriptor set */

FD_SET(sock, &fds);

/* wait 1.5 seconds for any data to be read

 from any single socket */

select(sock+1, &fds, NULL, NULL, &tv);

if (FD_ISSET(sock, &fds))

{

 recvfrom(s, buffer, buffer_len, 0, &sa, &sa_len);

 /* do something */

}

else

{

 /* do something else */

}

Unix Socket

32

This chapter describes all the helper functions, which are used while doing

socket programming. Other helper functions are described in the chapters:

Ports and Services and Network Byte Orders.

The write Function

The write function attempts to write nbyte bytes from the buffer pointed by buf

to the file associated with the open file descriptor, fildes.

You can also use send() function to send data to another process.

#include <unistd.h>

int write(int fildes, const void *buf, int nbyte);

Upon successful completion, write() returns the number of bytes actually written

to the file associated with fildes. This number is never greater than nbyte.

Otherwise, -1 is returned.

Parameters

 fildes: It is a socket descriptor returned by the socket function.

 buf: It is a pointer to the data you want to send.

 nbyte: It is the number of bytes to be written. If nbyte is 0, write() will

return 0 and have no other results if the file is a regular file; otherwise,

the results are unspecified.

The read Function

The read function attempts to read nbyte bytes from the file associated with the

open file descriptor, fildes, into the buffer pointed to by buf.

You can also use recv() function to read data to another process.

#include <unistd.h>

int read(int fildes, const void *buf, int nbyte);

10. HELPER FUNCTIONS

Unix Socket

33

Upon successful completion, write() returns the number of bytes actually written

to the file associated with fildes. This number is never greater than nbyte.

Otherwise, -1 is returned.

Parameters

 fildes: It is a socket descriptor returned by the socket function.

 buf: It is the buffer to read the information into..

 nbyte: It is the number of bytes to read.

The fork Function

The fork function creates a new process. The new process called the child

process will be an exact copy of the calling process (parent process). The child

process inherits many attributes from the parent process.

#include <sys/types.h>

#include <unistd.h>

int fork(void);

Upon successful completion, fork() returns 0 to the child process and the process

ID of the child process to the parent process. Otherwise -1 is returned to the

parent process, no child process is created and errno is set to indicate the error.

Parameters

 void: It means no parameter is required.

The bzero Function

The bzero function places nbyte null bytes in the string s. This function is used to

set all the socket structures with null values.

 void bzero(void *s, int nbyte);

This function does not return anything.

Parameters

 s: It specifies the string which has to be filled with null bytes. This will be

a point to socket structure variable.

Unix Socket

34

 nbyte: It specifies the number of bytes to be filled with null values. This

will be the size of the socket structure.

The bcmp Function

The bcmp function compares byte string s1 against byte string s2. Both strings

are assumed to be nbyte bytes long.

int bcmp(const void *s1, const void *s2, int nbyte);

This function returns 0 if both strings are identical, 1 otherwise. The bcmp()

function always returns 0 when nbyte is 0.

Parameters

 s1: It specifies the first string to be compared.

 s2: It specifies the second string to be compared.

 nbyte: It specifies the number of bytes to be compared.

The bcopy Function

The bcopy function copies nbyte bytes from string s1 to the string s2.

Overlapping strings are handled correctly.

void bcopy(const void *s1, void *s2, int nbyte);

This function does not return anything.

Parameters

 s1: It specifies the source string.

 s2v: It specifies the destination string.

 nbyte: It specifies the number of bytes to be copied.

The memset Function

The memset function is also used to set structure variables in the same way

as bzero. Take a look at its syntax, given below.

void *memset(void *s, int c, int nbyte);

This function returns a pointer to void; in fact, a pointer to the set memory and

you need to caste it accordingly.

Unix Socket

35

Parameters

 s: It specifies the source to be set.

 c: It specifies the character to set on nbyte places..

 nbyte: It specifies the number of bytes to be set.

Unix Socket

36

To make a process a TCP server, you need to follow the steps given below:

 Create a socket with the socket() system call.

 Bind the socket to an address using the bind() system call. For a server

socket on the Internet, an address consists of a port number on the host

machine.

 Listen for connections with the listen() system call.

 Accept a connection with the accept() system call. This call typically blocks

until a client connects with the server.

 Send and receive data using the read() and write() system calls.

Now let us put these steps in the form of source code. Put this code into the file

server.c and compile it with gcc compiler.

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

int main(int argc, char *argv[])

{

 int sockfd, newsockfd, portno, clilen;

 char buffer[256];

 struct sockaddr_in serv_addr, cli_addr;

 int n;

 /* First call to socket() function */

 sockfd = socket(AF_INET, SOCK_STREAM, 0);

 if (sockfd < 0)

 {

 perror("ERROR opening socket");

 exit(1);

 }

11. SERVER EXAMPLES

Unix Socket

37

 /* Initialize socket structure */

 bzero((char *) &serv_addr, sizeof(serv_addr));

 portno = 5001;

 serv_addr.sin_family = AF_INET;

 serv_addr.sin_addr.s_addr = INADDR_ANY;

 serv_addr.sin_port = htons(portno);

 /* Now bind the host address using bind() call.*/

 if (bind(sockfd, (struct sockaddr *) &serv_addr,

 sizeof(serv_addr)) < 0)

 {

 perror("ERROR on binding");

 exit(1);

 }

 /* Now start listening for the clients, here process will

 * go in sleep mode and will wait for the incoming connection

 */

 listen(sockfd,5);

 clilen = sizeof(cli_addr);

 /* Accept actual connection from the client */

 newsockfd = accept(sockfd, (struct sockaddr *)&cli_addr, &clilen);

 if (newsockfd < 0)

 {

 perror("ERROR on accept");

 exit(1);

 }

 /* If connection is established then start communicating */

 bzero(buffer,256);

 n = read(newsockfd,buffer,255);

 if (n < 0)

 {

Unix Socket

38

 perror("ERROR reading from socket");

 exit(1);

 }

 printf("Here is the message: %s\n",buffer);

 /* Write a response to the client */

 n = write(newsockfd,"I got your message",18);

 if (n < 0)

 {

 perror("ERROR writing to socket");

 exit(1);

 }

 return 0;

}

Handle Multiple Connections

To allow the server to handle multiple simultaneous connections, we make the

following changes in the above code:

 Put the accept statement and the following code in an infinite loop.

 After a connection is established, call fork() to create a new process.

 The child process will close sockfd and call doprocessing function, passing

the new socket file descriptor as an argument. When the two processes

have completed their conversation, as indicated by doprocessing()

returning, this process simply exits.

 The parent process closes newsockfd. As all of this code is in an infinite

loop, it will return to the accept statement to wait for the next connection.

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

int main(int argc, char *argv[])

{

Unix Socket

39

 int sockfd, newsockfd, portno, clilen;

 char buffer[256];

 struct sockaddr_in serv_addr, cli_addr;

 int n;

 /* First call to socket() function */

 sockfd = socket(AF_INET, SOCK_STREAM, 0);

 if (sockfd < 0)

 {

 perror("ERROR opening socket");

 exit(1);

 }

 /* Initialize socket structure */

 bzero((char *) &serv_addr, sizeof(serv_addr));

 portno = 5001;

 serv_addr.sin_family = AF_INET;

 serv_addr.sin_addr.s_addr = INADDR_ANY;

 serv_addr.sin_port = htons(portno);

 /* Now bind the host address using bind() call.*/

 if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)

 {

 perror("ERROR on binding");

 exit(1);

 }

 /* Now start listening for the clients, here

 * process will go in sleep mode and will wait

 * for the incoming connection

 */

 listen(sockfd,5);

 clilen = sizeof(cli_addr);

 while (1)

 {

Unix Socket

40

 newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen);

 if (newsockfd < 0)

 {

 perror("ERROR on accept");

 exit(1);

 }

 /* Create child process */

 pid = fork();

 if (pid < 0)

 {

 perror("ERROR on fork");

 exit(1);

 }

 if (pid == 0)

 {

 /* This is the client process */

 close(sockfd);

 doprocessing(newsockfd);

 exit(0);

 }

 else

 {

 close(newsockfd);

 }

 } /* end of while */

}

The following code segment shows a simple implementation

of doprocessing function.

void doprocessing (int sock)

{

 int n;

 char buffer[256];

Unix Socket

41

 bzero(buffer,256);

 n = read(sock,buffer,255);

 if (n < 0)

 {

 perror("ERROR reading from socket");

 exit(1);

 }

 printf("Here is the message: %s\n",buffer);

 n = write(sock,"I got your message",18);

 if (n < 0)

 {

 perror("ERROR writing to socket");

 exit(1);

 }

}

Unix Socket

42

To make a process a TCP client, you need to follow the steps given below:

 Create a socket with the socket() system call.

 Connect the socket to the address of the server using the connect()

system call.

 Send and receive data. There are a number of ways to do this, but the

simplest way is to use the read() and write() system calls.

Now let us put these steps in the form of source code. Put this code into the file

client.c and compile it with gcc compiler.

Run this program and pass hostname and port number of the server to connect

to the server, which you already must have run in another Unix window.

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

int main(int argc, char *argv[])

{

 int sockfd, portno, n;

 struct sockaddr_in serv_addr;

 struct hostent *server;

 char buffer[256];

 if (argc < 3) {

 fprintf(stderr,"usage %s hostname port\n", argv[0]);

 exit(0);

 }

 portno = atoi(argv[2]);

 /* Create a socket point */

 sockfd = socket(AF_INET, SOCK_STREAM, 0);

12. CLIENT EXAMPLES

Unix Socket

43

 if (sockfd < 0)

 {

 perror("ERROR opening socket");

 exit(1);

 }

 server = gethostbyname(argv[1]);

 if (server == NULL) {

 fprintf(stderr,"ERROR, no such host\n");

 exit(0);

 }

 bzero((char *) &serv_addr, sizeof(serv_addr));

 serv_addr.sin_family = AF_INET;

 bcopy((char *)server->h_addr,

 (char *)&serv_addr.sin_addr.s_addr, server->h_length);

 serv_addr.sin_port = htons(portno);

 /* Now connect to the server */

 if (connect(sockfd,&serv_addr,sizeof(serv_addr)) < 0)

 {

 perror("ERROR connecting");

 exit(1);

 }

 /* Now ask for a message from the user, this message

 * will be read by server

 */

 printf("Please enter the message: ");

 bzero(buffer,256);

 fgets(buffer,255,stdin);

 /* Send message to the server */

 n = write(sockfd,buffer,strlen(buffer));

 if (n < 0)

 {

Unix Socket

44

 perror("ERROR writing to socket");

 exit(1);

 }

 /* Now read server response */

 bzero(buffer,256);

 n = read(sockfd,buffer,255);

 if (n < 0)

 {

 perror("ERROR reading from socket");

 exit(1);

 }

 printf("%s\n",buffer);

 return 0;

}

Unix Socket

45

Here is a list of all the functions related to socket programming.

Port and Service Functions

Unix provides the following functions to fetch service name from the

/etc/services file.

 struct servent *getservbyname(char *name, char *proto): This call

takes a service name and a protocol name and returns the corresponding

port number for that service.

 struct servent *getservbyport(int port, char *proto): This call takes

a port number and a protocol name and returns the corresponding service

name.

Byte Ordering Functions

 unsigned short htons (unsigned short hostshort): This function

converts 16-bit (2-byte) quantities from host byte order to network byte

order.

 unsigned long htonl (unsigned long hostlong): This function converts

32-bit (4-byte) quantities from host byte order to network byte order.

 unsigned short ntohs (unsigned short netshort): This function

converts 16-bit (2-byte) quantities from network byte order to host byte

order.

 unsigned long ntohl (unsigned long netlong): This function converts

32-bit quantities from network byte order to host byte order.

IP Address Functions

 int inet_aton (const char *strptr, struct in_addr *addrptr): This

function call converts the specified string, in the Internet standard dot

notation, to a network address, and stores the address in the structure

provided. The converted address will be in Network Byte Order (bytes

ordered from left to right). It returns 1 if the string is valid and 0 on error.

 in_addr_t inet_addr (const char *strptr): This function call converts

the specified string, in the Internet standard dot notation, to an integer

value suitable for use as an Internet address. The converted address will

be in Network Byte Order (bytes ordered from left to right). It returns a

13. SUMMARY

Unix Socket

46

32-bit binary network byte ordered IPv4 address and INADDR_NONE on

error.

 char *inet_ntoa (struct in_addr inaddr): This function call converts

the specified Internet host address to a string in the Internet standard dot

notation.

Socket Core Functions

 int socket (int family, int type, int protocol): This call returns a

socket descriptor that you can use in later system calls or it gives you -1

on error.

 int connect (int sockfd, struct sockaddr *serv_addr, int

addrlen): The connect function is used by a TCP client to establish a

connection with a TCP server. This call returns 0 if it successfully connects

to the server, otherwise it returns -1.

 int bind(int sockfd, struct sockaddr *my_addr,int addrlen): The

bind function assigns a local protocol address to a socket. This call returns

0 if it successfully binds to the address, otherwise it returns -1.

 int listen(int sockfd,int backlog): The listen function is called only by a

TCP server to listen for the client request. This call returns 0 on success,

otherwise it returns -1.

 int accept (int sockfd, struct sockaddr *cliaddr, socklen_t

*addrlen): The accept function is called by a TCP server to accept client

requests and to establish actual connection. This call returns a non-

negative descriptor on success, otherwise it returns -1.

 int send(int sockfd, const void *msg, int len, int flags): The send

function is used to send data over stream sockets or CONNECTED

datagram sockets. This call returns the number of bytes sent out,

otherwise it returns -1.

 int recv (int sockfd, void *buf, int len, unsigned int flags): The recv

function is used to receive data over stream sockets or CONNECTED

datagram sockets. This call returns the number of bytes read into the

buffer, otherwise it returns -1 on error.

 int sendto (int sockfd, const void *msg, int len, unsigned int flags,

const struct sockaddr *to, int tolen): The sendto function is used to

send data over UNCONNECTED datagram sockets. This call returns the

number of bytes sent, otherwise it returns -1 on error.

 int recvfrom (int sockfd, void *buf, int len, unsigned int flags

struct sockaddr *from, int *fromlen): The recvfrom function is used

to receive data from UNCONNECTED datagram sockets. This call returns

the number of bytes read into the buffer, otherwise it returns -1 on error.

Unix Socket

47

 int close (int sockfd): The close function is used to close a

communication between the client and the server. This call returns 0 on

success, otherwise it returns -1.

 int shutdown (int sockfd, int how): The shutdown function is used to

gracefully close a communication between the client and the server. This

function gives more control in comparison to close function. It returns 0

on success, -1 otherwise.

 int select (int nfds, fd_set *readfds, fd_set *writefds, fd_set

*errorfds, struct timeval *timeout): This function is used to read or

write multiple sockets.

Socket Helper Functions

 int write (int fildes, const void *buf, int nbyte): The write function

attempts to write nbyte bytes from the buffer pointed to by buf to the file

associated with the open file descriptor, fildes. Upon successful

completion, write() returns the number of bytes actually written to the file

associated with fildes. This number is never greater than nbyte.

Otherwise, -1 is returned.

 int read (int fildes, const void *buf, int nbyte): The read function

attempts to read nbyte bytes from the file associated with the open file

descriptor, fildes, into the buffer pointed to by buf. Upon successful

completion, write() returns the number of bytes actually written to the file

associated with fildes. This number is never greater than nbyte.

Otherwise, -1 is returned.

 int fork (void): The fork function creates a new process. The new

process, called the child process, will be an exact copy of the calling

process (parent process).

 void bzero (void *s, int nbyte): The bzero function places nbyte null

bytes in the string s. This function will be used to set all the socket

structures with null values.

 int bcmp (const void *s1, const void *s2, int nbyte): The bcmp

function compares the byte string s1 against the byte string s2. Both the

strings are assumed to be nbyte bytes long.

 void bcopy (const void *s1, void *s2, int nbyte): The bcopy function

copies nbyte bytes from the string s1 to the string s2. Overlapping strings

are handled correctly.

 void *memset(void *s, int c, int nbyte): The memset function is also

used to set structure variables in the same way as bzero.

