Die Dreieckschaltung

Handreichung zur Präsentation

Raphael Dienert

5. Oktober 2016

Inhaltsverzeichnis

1	Wie	derholung: Knoten- und Maschenregel	1
	1.1	8	1
		1.1.1 Beispiel Maschenregel	1
	1.2	Knotenregel	1
		1.2.1 Beispiel Knotenregel	2
2	Drei	phasenwechselstrom	2
_		Erzeugung von Dreiphasenwechselstrom mit einer Synchronmaschine	2
3	Strö	me und Spannungen bei der Dreieckschaltung	2
	3.1	Ströme und Spannungen bei der Dreieckschaltung	2
4	1. A	rbeitsauftag	3
	4.1		3
5	Lösu	ing 1	3
	5.1	Ströme und Spannungen im Zeigerdiagramm	3
6 2. Arbeitsauftag			
	6.1	Knotenregeln aufstellen	4
7	Lösu	ing 2	4
	7.1	Ströme und Spannungen im Zeigerdiagramm	4
	7.2	Phasenverschiebung des Leiterstroms	5
8	Spez	zialfall: symmetrische Belastung	5
	8.1	Ströme und Spannungen im Zeigerdiagramm bei symmetrischer Bela-	-
	8.2	stung	5
	8.3	Anwendung: Stern- Dreieck-Anlauf von Drehstrommotoren	6
9	Lite	raturverzeichnis	7
10	Nacl	hschlagewerke und Softwarewerkzeuge	7
11	Abb	ildungsverzeichnis und Bildquellen	7

1 Wiederholung: Knoten- und Maschenregel

1.1 Maschenregel

- Eine Masche ist ein geschlossener Weg innerhalb einer beliebigen Schaltung.
- Definition der Maschenregel:

Geht man in einer Masche einmal komplett im Kreis herum, ist die Summer aller Spannungen **Null**!

• Beim Aufsummieren der Spannungen muss man die Pfeilrichtungen beachten: Spannungspfeile, die gegen die Laufrichtung zeigen werden negativ gezählt.

Vgl.: [1]

1.1.1 Beispiel Maschenregel

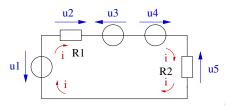


Abbildung 1: Beispiel zur Maschenregel

$$-u_1 + u_2 - u_3 + u_4 - u_5 = 0$$

Vgl.: [1]

1.2 Knotenregel

- Ein Knoten ist ein Punkt, an dem mehrere elektrische Leiter miteinander verbunden sind.
- Definition der Knotenregel:

Die Summe aller Ströme, die auf einen Knoten zufliessen ist genauso gross wie die Summe aller Ströme, die von diesem Knoten wegfliessen!

- Die Knotenregel ist ein Spezialfall des Ladungserhaltungssatzes.
- Im Knoten geht keine Ladung verloren: soviel Elektronen wie hineinfliessen, fliessen auch wieder hinaus.

Vgl.: [2]

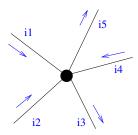
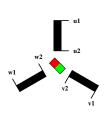
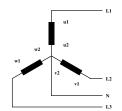
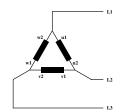


Abbildung 2: Beispiel zur Knotenregel

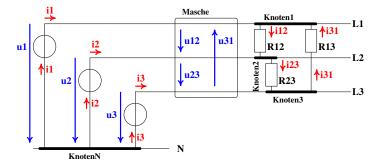

1.2.1 Beispiel Knotenregel


$$i_1 + i_2 + i_4 = i_3 + i_5$$


Vgl.: [2]

2 Dreiphasenwechselstrom

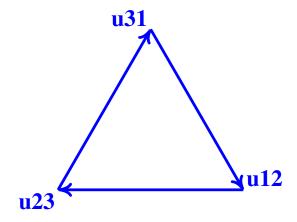
2.1 Erzeugung von Dreiphasenwechselstrom mit einer Synchronmaschine



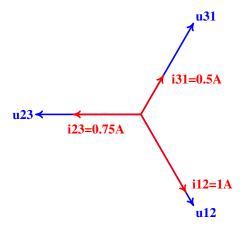
3 Ströme und Spannungen bei der Dreieckschaltung

3.1 Ströme und Spannungen bei der Dreieckschaltung

4 1. Arbeitsauftag


4.1 Maschenregeln aufstellen

- Stelle die Maschenregel für die Strangspannungen U12, U23 und U31 auf.
- Zeiche das Zeigerdiagramm auf zwei Arten: als gleichseitiges Dreieck und als Stern.
- Zeichne in das sternförmige Zeigerdiagramm die Ströme i12, i23 und i31 ein. Dabei soll gelten: U1 = U2 = U3= 230Veff, R12 = 563Ω , R13 = 751Ω , R23 = 1123Ω
- Hinweis: wie gross ist der Effektivwert der Strangspannungen U12, U23 und U13? Wie gross wird der Scheitelwert der Strangspannungen?


5 Lösung 1

5.1 Ströme und Spannungen im Zeigerdiagramm

• Die Anwendung der Maschenregel ergibt ein gleichseitiges, geschlossenes *Dreieck*:

- Durch Verschieben der Zeiger erhält man einen Stern
- Da wir ohmsche Lastwiderstände haben, sind die Ströme *in Phase* mit den Spannungen

6 2. Arbeitsauftag

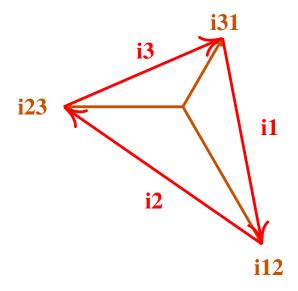
6.1 Knotenregeln aufstellen

- Stelle die Knotenregeln für die Knoten Knoten1, Knoten2 und Knoten3 auf.
- Leite aus den Knotenregeln Gleichungen für i1, i2 und i3 her.
- Zeichne die drei Ströme in das Zeigerdiagramm ein.
- Ist auch die Knotenregel für den Knoten KnotenN erfüllt?

7 Lösung 2

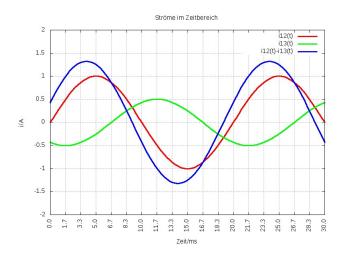
7.1 Ströme und Spannungen im Zeigerdiagramm

• Maschenregel Knoten1: i1 + i31 - i12 = 0


$$i1 = i12 - i31$$

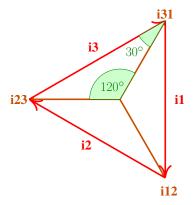
 Maschenregel Knoten2: i2 - i23 + i12 = 0

$$i2 = i23 - i12$$


• Maschenregel Knoten3: i3 + i23 - i31 = 0

$$i3 = i31 - i23$$

7.2 Phasenverschiebung des Leiterstroms


mit gnuplot erstelltes Schaubild der Ströme i12, i13 und i1:

8 Spezialfall: symmetrische Belastung

8.1 Ströme und Spannungen im Zeigerdiagramm bei symmetrischer Belastung

- Bei symmetrischer Belastung sind i1 = i2 = i3
- die Strangströme bilden einen Winkel von 120° zueinander
- die Phase zwischen zwei Leiterströmen beträgt ebenfalls 120°

8.2 Leistung bei der Dreieckschaltung

Der Leiterstrom wird $\sqrt{3}$ mal so gross wie der Strangstrom

- Der Verbraucher wird bei Dreieckschaltung mit der Strangspannung betrieben.
- Die Strangspannung ist ebenfalls um den Faktor $\sqrt{3}$ grösser als die Leiterspannung.
- Damit wird die Leistung bei der Dreieckschaltung um den Faktor $\sqrt{3} \cdot \sqrt{3} = 3$ grösser als bei der Sternschaltung.

8.3 Anwendung: Stern- Dreieck-Anlauf von Drehstrommotoren

- Der Stern-Dreieck-Anlauf wird verwendet um die hohen Ströme beim Anlauf von Elektromotoren mit mehr als 3kW Leistung abzumildern.
- Der Motor wird in zwei Stufen angelassen.
- Stern-Dreieck-Anlaufschalter eines Gartenhäckslers:

9 Literaturverzeichnis

Literatur

- [1] http://dt.wara.de/pdf/its/netzwerkTechnik/einfuehrungE-technik/artikel.pdf, Seite 6
- [2] http://dt.wara.de/pdf/its/netzwerkTechnik/einfuehrungE-technik/artikel.pdf, Seite 7

10 Nachschlagewerke und Softwarewerkzeuge

<article> Aus diesen Werken wurde nicht zitiert!

Fachkunde Elektrotechnik Europa Lehrbuch, ISBN 3-8085-3431-1, S.150-151, S.294
Handbuch zu Tikz The Tik Z and PGF Packages, Till Tantau, pdf, 2012
gnuplot Funktionsplotter, Quelltext s.u.

11 Abbildungsverzeichnis und Bildquellen

Abbildungsverzeichnis

1	Beispiel zur Maschenregel	1
2	Beispiel zur Knotenregel	2
3	Generator in Stern- und Dreieckschaltung, R. Dienert, gezeichnet mit	
	tikz	2
4	Ströme und Spannungen bei der Dreieckschaltung, R. Dienert, gezeich-	
	net mit tikz	2
5	Strangspannungen im Dreieck, R. Dienert, gezeichnet mit tikz	3
6	Strangspannungen und -Ströme im Zeigerdiagramm, R. Dienert, ge-	
	zeichnet mit tikz	4
7	Zeigerdiagramm der Ströme bei asymmetrischer Belastung, R. Dienert,	
	gezeichnet mit tikz	5
8	Leiter- und Strangstöme im Zeitbereich, R. Dienert, erstellt mit gnuplot	5
9	Zeigerdiagramm der Ströme bei symmetrischer Belastung, R. Dienert,	
	gezeichnet mit tikz	6
10	Motorsteuerung mit Stern-Dreick-Anlauf, R. Dienert, eigenes Foto	6

Quelltext des gnuplot-Skripts

```
f=50
i12(t)=1*sin(2.0*pi*f*t/1000)
i13(t)=0.5*sin(2.0*pi*f*(t/1000-6.666666666667))
set xrange[0:30]
set yrange[-2:2]
set title 'Ströme im Zeitbereich'
set xlabel 'Zeit/ms'
set ylabel 'i/A'
set terminal qt
set dummy t
#set ytics 0.05
set xtics 1.666666 rotate
set format x "%2.1f"
set grid
set term jpeg size 800,600
set output 'phasen.jpg'
plot i12(t), i13(t), i12(t)-i13(t)
```