Schnelleinführung Netzwerktechnik

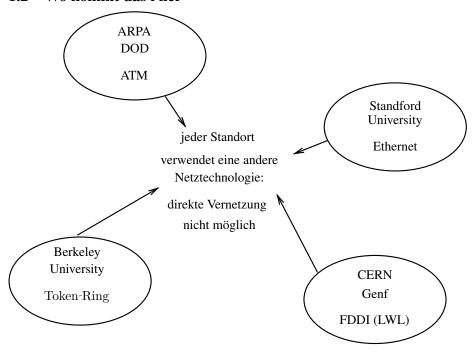
Handreichung zur Präsentation

Michael Dienert

19. November 2013

Inhaltsverzeichnis

1	Von	n LAN zum Internet	1
	1.1	Vom ARPANET zum Internet	1
	1.2	Wo kommt das i her	1
		1.2.1 Ein Hardwareunabhängiges Adressschema	1
		1.2.2 Das Internet-Protokoll Version 4 und seine Adressen	2
	1.3	Ein Beispiel für den Datenversand im Internet	2
		1.3.1 Ein Beispiel	3
	1.4	Paketversand einer Datei	3
	1.5	Erster Kontakt mit den Netzwerkschichten	4
	1.6	Grundprinzip des Internets	4
	1.7	Ausweitung des Internets auf Geräte	4
2	Rah	amen, Pakete, virtuelle Verbindungen	4
	2.1	Das OSI- und das DOD-Schichtenmodell	4
	2.2	Die beiden Schichtenmodelle der Netzwerktechnik	5
	2.3	Virtuelle Verbindungen	5
	2.4	Virtuelle Verbindungen mit TCP	5
	2.5	Praktischer Versuch mit nc	6
	2.6	Datentelegramme mit UDP	6
	2.7	Kapselung: mehrfache Verpackung der Daten	6
3	Vers	such: Daten mit nc übertragen und Datenverkehr mitschneiden	7
	3.1	Analyse des Datenverkehrs	7
	3.2	Details des IP-Headers	7
	3.3	Details des TCP-Headers	7
	3.4	Details eines Ethernet-Frames	8
	3.5	Ethernet-Frame mit IP-Paket	8
	3.6	Aufzeichnung von Netzwerkverkehr	8
4	IP-A	Adressen und Subnetze	9
	4.1	32bit IPv4-Adressen	9
	4.2	Subnetze	9
	4.3	Subnetzmaske und Präfixlänge	10
	4.4	Die Subnetzmaske im Detail	10
	4.5	Netz- und Broadcastadresse	10


	4.6	Regeln zu Netz- und Broadcastadressen	11
5		ress Resolution Protocol Verbindung zwischen Schicht2 und Schicht3	11 11
6 Routing		ting	12
	6.1	Router und Routen	12
	6.2	Routingentscheidung, Routingtabelle und Standardgateway	12
	6.3	Bild einer Netzwerktopologie	12
	6.4	Der Weg eines Pakets durch das Netz	13

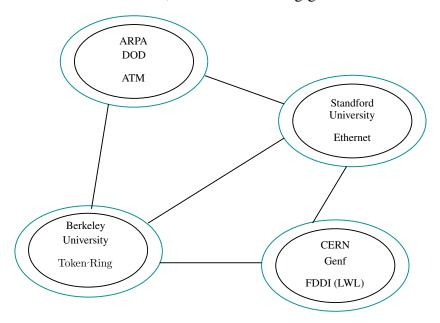
1 Vom LAN zum Internet

1.1 Vom ARPANET zum Internet

- Entstehung in den USA
- Idee: dezentrale Kommunikationsstruktur
- Verbindungen zwischen Computersystemen schaffen
- Staatliche Unterstützung der Entwicklung: Department of Defense, DOD
- Arbeitsgruppe innerhalb des DOD: US Defense Advanced Research Projects Agency, DARPA
- 1969 (!) erste Experimente mit ARPANET; regulärer Betrieb ab 1975
- 1983 werden TCP und IP zu den Standardprotokollen des Internets

1.2 Wo kommt das i her

1.2.1 Ein Hardwareunabhängiges Adressschema


 Jeder Standort hat eine eigene Netzhardware ⇒ Eine direkte Vernetzung ist nicht möglich

• Beispiel: Ethernet-Adressen 01001000 00101100 011... Token-Ring-Adressen 00010010 00110100 010...

 \Rightarrow die **Hardware**-Adressen von Ethernet- und Token-Ring-Geräten werden auf dem Netzwerkmedium völlig verschieden übertragen.

- Lösung des Problems: Es wird ein zusätzliches, weltweit einheitliches, hardwareunabhängiges Adressschema geschaffen
- Vernetzung unterschiedlicher Standorte wird möglich

Weltweit einheitliches, hardwareunabhängiges Adressschema

Vernetzung zwischen den lokalen Netzen wird möglich

Es entsteht ein Inter-LAN-Netzwerk: Internet

1.2.2 Das Internet-Protokoll Version 4 und seine Adressen

- Protokoll für den Datenaustausch im Internet: Internet-Protokoll
- 1980: DoD Standard Internet Protocol IPv3
- IPv3 verwendete 32-Bit Internet-Protokoll-Adressen
- 1981 wird **IPv4** eingeführt, ebenfalls mit 32-Bit IP-Adressen.
- Adressraum ist ca. 4.3 Milliarden Adressen gross, seit 2011 erschöpft
- Seit 1998: **IPv6**, 128bit Adressen.
- Da IPv6 rasant an Bedeutung gewinnt, sollte man nun das IP-Protokoll exakt bezeichnen: IPv4 / IPv6

1.3 Ein Beispiel für den Datenversand im Internet

Behutsame Hinführung an die berühmt-berüchtigten OSI-Schichten

• Das Internet ist historisch über Jahrzehnte gewachsen

- Verschiedene Institutionen waren an der Entwicklung beteiligt (DOD/ARPA, IE-EE, IETF)
 - \Rightarrow Bei der Datenübertragung zwischen zwei Rechnern im Internet sind eine Vielzahl an Programmen, Protokollen und Geräten beteiligt.
 - ⇒ Gesamtüberblick ist nur durch Einführung eines Modells möglich
- Problem für Anfänger: das Modell ist zwar sehr mächtig, aber auch sehr abstrakt und zu Beginn (mir) unverständlich
 - ⇒ Annäherung an das Modell mit einem **Beispiel** von der praktischen Seite her.

1.3.1 Ein Beispiel

Lieferung von Einbauküchen an ein Möbelhaus

- Hersteller verpackt Einzelteile einer Küche in Kartons. Die Kartons werden bezeichnet um sie wieder der richtigen Küche zuordnen zu können.
- Je ein Karton wird auf eine Euro-Palette gestellt → einheitliches Format im Speditionswesen. Die Paletten werden mit Adressaufklebern des Absenders und Empfängers versehen.
- Die Paletten werden mit unterschiedlichen **Verkehrsmitteln** transportiert. Es kann vorkommen, dass die Paletten einer Küche auf mehrere Fahrzeuge verteilt befördert werden.
- Das Möbelhaus erhält mehrere Paletten mit Kartons mehrerer Küchen. Durch die Kennzeichnung der Kartons werden diese richtig an den Endkunden ausgeliefert.

1.4 Paketversand einer Datei

Das Palettenbeispiel wird auf das Internet angewendet: Übertragung einer Datei im Internet

- Datei wird in maximal 1500 Byte grosse Teile zerlegt
- Jedes Teilstück wird mit einem Header versehen, um im Ziel die Datei wieder zusammensetzen zu können. → Segment
- Der Header enthält u.a. die Nummer des Endkunden: \rightarrow **Portadresse**
- Segmente palettieren: jedes Segment erhält nochmals einen Header mit der Internet-Zieladresse und weiteren Informationen für die Transportbürokratie. \rightarrow **IP-Paket**
- Verladen der Paletten: Die IP-Pakete werden mit einem Header und einer Prüfsumme versehen. Transportmittel → Frame Transportweg →Bitübertragung

1.5 Erster Kontakt mit den Netzwerkschichten

Endkunde	http, smtp, dns,	Schicht 7
nummeriertes Bauteil	Segment mit Portadresse	Schicht 4
Palette mit Adressen	IP-Paket mit Header	Schicht 3
	(1984)	
Umladestation	Router	Schicht 3
LKW, Bahnwaggon,	Ethernet-, TokenRing-,	Schicht 2
Schiff	FDDI-Frame	
StVO, StVZO,	Bitübertragungsschicht	Schicht 1

1.6 Grundprinzip des Internets

Wichtige Regel, für später merken:

Wie die Paletten auch, werden die IP-Pakete beim **Umladen** nicht geändert

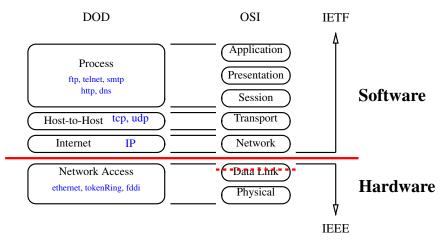
1.7 Ausweitung des Internets auf Geräte

- Original-Idee von IP: ein hardwareunabhängiges, paketorientiertes Übertragungsprotokoll zwischen den bestehenden LANs.
- paketorientiert: eine komplette Küche wird nicht in einem riesigen Lastzug, sondern verteilt auf kleinere Fahrzeuge transportiert
- Da überall palettenkompatible Geräte entwickelt werden, werden die Paletten nun nach und nach auch auf den Firmengeländen (LAN) und sogar innerhalb der Firmengebäude (Host=PC) der Küchenhersteller verwendet.

IP ist das Standardprotokoll für Netzwerkanwendungen im Internet, im lokalen Netzwerk und sogar innerhalb eines Rechners (\rightarrow localhost / 127.0.0.1 / ::1

Beispiel für ein Netzwerk, bei dem das noch anders war: **NetBIOS / NetBEUI** : die verpackten Küchenteile werden einfach so in den LKW geladen **ohne** Palette. Nachteil: nicht routbar

2 Rahmen, Pakete, virtuelle Verbindungen


2.1 Das OSI- und das DOD-Schichtenmodell

Unser Palettenmodell stösst bei der Erforschung weiterer Details an Grenzen \to es muss ein besseres Modell her:

- 1. Das Modell des DoD: einfach, anschaulich, bildet das real existierende Internet ab. Nachteil: im hardwarenahen Bereich zu grob
- 2. Das Modell der ISO: Open System Interconnection: **OSI**: detailiert, keine Implementierung, für Netzwerker **unumgänglich**

2.2 Die beiden Schichtenmodelle der Netzwerktechnik

logische Adressen (IP-Adr.)

physikalische Adressen (MAC-Adr.)

2.3 Virtuelle Verbindungen

- Problem: IP arbeitet paketorientiert. Die Endanwendung möchte aber einen kontinuierlichen Strom von einzelnen Bytes.
- Lösung: zwischen IP und die Anwendung kommt eine neue Schicht, die die Paketorientierung **komplett versteckt** und eine Datenschnittstelle zur Verfügung stellt, die sich **wie eine Datei verhält** (UNIX: alles ist eine Datei)

2.4 Virtuelle Verbindungen mit TCP

- Transmission Control Protocol TCP
- Aus Sicht des Programmentwicklers: TCP stellt **virtuelle** Verbindung her (Bytes durchnummeriert). Zurück zum Palettenbeispiel:

reale Verbindung Paletten-Förderband

virtuelle Verbindung Just-in-Time-Lieferung \rightarrow aufwändiges Transportmanagement notwendig

- $\bullet \ \ Endpunkte \ der \ Verbindung: Sockets \ (\rightarrow Rohrpost)$
 - mehrere Sockets pro Host
 - Socket über Portnummer identifiziert
 - bestimmte Portnummern werden Anwendungen zugeordnet (eingehende Verbindungen)

2.5 Praktischer Versuch mit nc

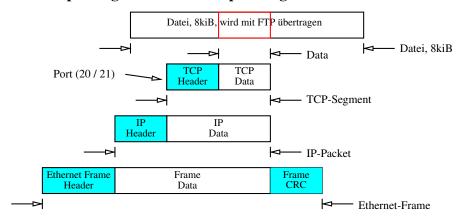
nc: Net Cat

- nc = Schweizer Taschenmesser des Netzwerkers
- nc verbindet Standard-Eingabe (Tastatur) mit Standard-Ausgabe (Terminalfenster) eines entfernten Rechners
- Server:

```
nc -1 5555
```

5555 oder andere Portnummer > 1024

• Client:

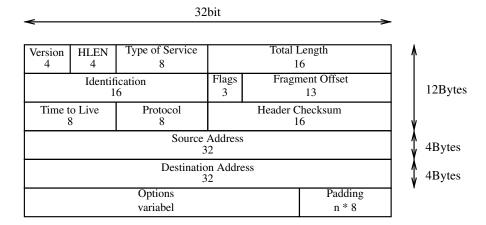

```
nc r023-tafel.wara.de 5555
```

statt
r023-tafel.wara.de Rechnername eines Hosts, auf dem
nc -1 5555 läuft nehmen $\,$

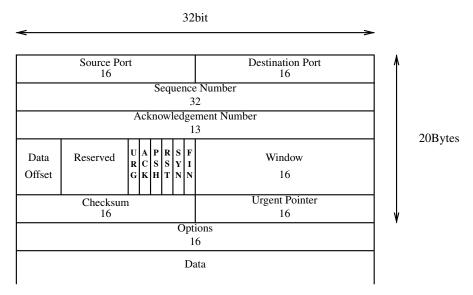
2.6 Datentelegramme mit UDP

- Schwesterprotokoll: UDP
 - UDP arbeitet auch mit Portnummern
 - kein Bytestrom ⇒ bis 64kiB grosse Datagramme ⇒ wegschicken und vergessen
- deutlich schneller als TCP
- keine Sicherung der Übertragung

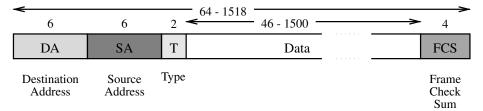
2.7 Kapselung: mehrfache Verpackung der Daten


3 Versuch: Daten mit nc übertragen und Datenverkehr mitschneiden

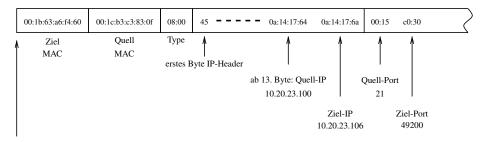
3.1 Analyse des Datenverkehrs


Im Folgenden soll der Datenverkehr einer Client-Server-Verbindung mit nc analysiert werden. Dazu benötigt man:

- Netzwerk-Mitschneideprogramm: tcpdump oder wireshark
- Kenntnis des Hexadezimalsystems: wird vorausgesetzt
- Details des TCP- und IP-Headers und des Ethernet-Frames: siehe nächste Folien


3.2 Details des IP-Headers

3.3 Details des TCP-Headers



3.4 Details eines Ethernet-Frames

3.5 Ethernet-Frame mit IP-Paket

Ein Ethernet-**Frame** mit eingebettetem IP-**Paket** mit eingebettetem TCP-**Segment** Die eigentlichen Daten stehen weiter rechts und sind nicht mehr auf dem Bild:

Ab hier wird aufgezeichnet

3.6 Aufzeichnung von Netzwerkverkehr

Aufgabe: Mit dem Linux-Kommando topdump sollen Netzwerkpakete aufgezeichnet und anschliessend analysiert werden. Hier die wichtigsten Optionen von topdump:

- alle Ports und IP-Adressen werden als Zahlen und nicht mit ihrem Namen ausgegeben
- -t der Zeitstempel bei der Aufzeichnung wird unterdrückt
- -i nach -i wird das Netzwerkinterface angegeben (z.B. eth0)
- -XX es wird der Header und der Paketinhalt Hexadezimal und in ASCII ausgegeben
- -s 200 es werden 200Bytes pro Rahmen aufgezeichnet

Suchmuster am Ende des Befehls kann man ein Suchmuster angeben. Z.B.

→ Nur Pakete mit der Adresse 10.1.25.103 werden aufgezeichnet.

In den aufgezeichneten Paketen soll Folgendes gekennzeichnet werden:

- alle PDUs (Frame, Packet, Segment)
- MAC-Ziel, -Quelladresse

- Protocoll-Type (0800 / 0806), IP-Version, HLEN
- IP-Ziel, -Quelladresse

Vorgehensweise:

- Rechner starten, Ubuntu-Symbol anklicken
- Als lfb-Benutzer anmelden, Terminal starten (Zubehör)
- ullet im Terminal das Kommando su ausführen o **Passwort wird bekannt gegeben**
- tcpdump starten

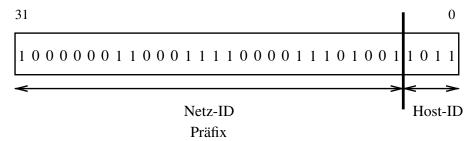
Beispiel für Aufruf von tcpdump:

```
tcpdump -ntXXi eth0 -s 200 ip host r023-lehrer
```

4 IP-Adressen und Subnetze

4.1 32bit IPv4-Adressen

- IPv4-Adresen sind 32 bit lang \Rightarrow es gibt $2^{32} = 4294967296$ Adressen
- IPv4-Adressen werden in der **Dotted Decimal Notation** geschrieben:


129.143.14.155

- Die 32bit der Adresse werden in 4 Oktette geteilt jedes Oktett wird ins Dezimalsystem umgewandelt → mathematisch unsinnige Schreibweise.
- Beispiel:

```
10000001 . 10001111 . 00001110 . 10011011
129 . 143 . 14 . 155
```

4.2 Subnetze

- 4 Milliarden Adressen ergeben ein zu grosses Netz: das Netz wird in kleinere **Subnetze** aufgeteilt.
- Die Trennung in Subnetze erfolgt ausschliesslich auf logischer Ebene:

Alle IP-Adressen, die im Netz-ID-Anteil übereinstimmen, gehören zum selben Subnetz.

4.3 Subnetzmaske und Präfixlänge

- Es muss festgelegt werden, wo die Trennung zwischen Netz-ID und Host-ID verläuft.
- Zwei Möglichkeiten:
 - 1. Angabe einer Subnetzmaske (s.u.)
 - 2. Angabe der Präfixlänge:

 $10.16.0.0/12 \Rightarrow \text{Netz-ID}$ ist 12bit lang

Diese Schreibweise wird CIDR- oder VLSM Schreibweise genannt:

CIDR Classless Internet Domain Routing

VLSM Variable Length Subnet Mask

4.4 Die Subnetzmaske im Detail

Die Subetzmaske ist eine spezielle IP-Adresse, deren Netz-ID nur aus 1 und deren Host-ID nur aus 0 besteht:

Beispiel:

4.5 Netz- und Broadcastadresse

- Bei der **Netzadresse** eines Subnetzes sind alle Host-ID-Bits = 0 ⇒ die Netzadresse ist die niedrigste Adresse in einem Subnetz
- Die Netzadresse wird für das Routing benötigt.
- Bei der Broadcastadresse eines Subnetzes, sind alle Host-ID-Bits = 1 ⇒ die Netzadresse ist die höchste Adresse in einem Subnetz
- Die IP-Broadcastadresse wird z.B. verwendet, um Drucker- und Dateifreigaben in einem Subnetz zu finden. Auch das Routing Protokoll RIPv1 arbeitet mit Broadcasts auf Layer3.

Berechnung der Netzadresse:

Die Netzadresse ergibt sich aus der bitweisen &-Vernküpfung einer IP-Adresse mit der zugehörgen Netzmaske:

```
129 . 143 . 14 . 155

1000 0001 . 1000 1111 . 0000 1110 . 1001 1011

1111 1111 . 1111 1111 . 1111 1111 . 1111 0000

1000 0001 . 1000 1111 . 0000 1110 . 1001 0000

129 . 143 . 14 . 144
```

Selbstverständlich muss man auch bei einer Netzadresse angeben, wieviele Bits der Netz-ID-Anteil hat:

10.16.0.0/24 hier sind die letzten 8bit Host-ID, damit ist die Adresse ebenfalls eine Netzadresse

172.16.6.112/28 ebenfalls eine Netzadresse

172.16.6.112/27 keine Netzadresse

4.6 Regeln zu Netz- und Broadcastadressen

Ein paar wichtige Regeln:

- Die Grösse (Anzahl Adressen) eines Netzes ist immer einer Potenz von 2.
- Eine Netzadresse muss immer durch die Grösse ihres Netzes teilbar sein.
- Netze mit gleicher Maske / Präfixlänge sind gleich gross
- Die Netzadresse ist die niedrigste Adresse in einem Subnetz
- Die Broadcastadresse ist die höchste Adresse in einem Subnetz

5 Address Resolution Protocol

5.1 Verbindung zwischen Schicht2 und Schicht3

Problem: IP-Adresse ist **hardwareunabhängig** ⇒ IP-Adresse kann **nicht** an eine bestimmt MAC-Adresse gebunden sein. Beispiel: Austausch der Netzwerkkarte: MAC-Adresse ändert sich, IP-Adresse bleibt

Lösung: Address Resolution Protocol, ARP

Funktion: HostA möchte IP-Paket an HostB senden, kennt aber nur dessen IP-Adresse. HostA sendet Layer2-Broadcast: "Wer hat die IP 10.20.23.100?" 10.20.23.100 antwortet mit einem Paket, in dem die gesuchte MAC-Adresse enthalten ist.

6 Routing

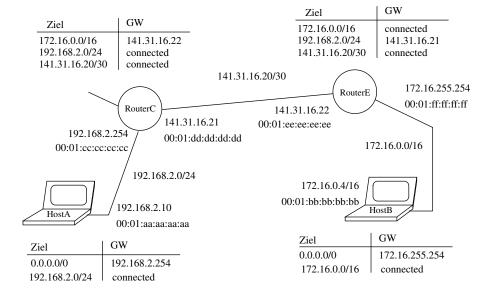
6.1 Router und Routen

Router Router sind Computer (mit CPU, RAM, ROM, OS), die IP-Pakete anhand der Layer3-Adresse (IP-Adresse) zwischen verschiedenen IP-Netzen weiterleiten → Packet-Forwarding. Weltweit erster Router für ARPANET: Honeywell 316 Minicomputer. Beginn des ARPANET: 30. August 1969

Packet-Forwarding Der Router entscheidet, in welches Netz er ankommende Daten weiterleiten soll anhand der Layer 3 IP-Zieladresse der ankommenden IP-Pakete.

Routen 3 Möglichkeiten:

- Route = Zielnetz + IP-Adr. Next Hop (GW)
- Route = Zielnetz + Exit Interface
- Route = eigenes Netz


6.2 Routingentscheidung, Routingtabelle und Standardgateway

Routingentscheidung Router vergleichen die Zielnetze in der Routingtabelle mit den Zielnetzen der ankommenden Pakete. Die Präfixlänge gibt an wieviele Bit von vorne gezählt übereinstimmen müssen Bei mehreren Übereinstimmungen: **best match** (grösste Anzahl passender Bits)

Routingtabelle Liste mit Routen

Default Gateway Das Default Gateway ist ein Eintrag in der Routingtabelle. Besonderheit: das Zielnetz hat die spezielle IP **0.0.0.0/0** 0.0.0.0/0 passt zu **jeder** IP-Adresse: 0 von 0 Bit müssen übereinstimmen

6.3 Bild einer Netzwerktopologie

6.4 Der Weg eines Pakets durch das Netz

- HostA sendet Paket an HostB
- ist das Ziel im eigenen Netz? Nein!
- gibt es ein Standardgateway in meiner Routingtabelle? Ja, IP=192.168.2.254
- Kenne ich die MAC-Adresse von 192.168.2.254? Nein. Frage an alle (Broadcast): wer hat 192.168.2.254?
- 192.168.2.254 sendet Antwortpaket (ARP-Reply) gesuchte MAC ist enthalten
- Frame von HostA:

Ziel-MAC	00:01:cc:cc:
Quell-MAC	00:01::aa:aa:
Quell-IP	192.168.2.10
Ziel-ip	172.16.0.4

- RouterC nimmt Frame in Empfang und l\u00e4dt Palette aus → Der Frame wird entfernt und nur das IP-Paket bleibt erhalten
- Habe ich für das Netz der Ziel-IP eine Route in meiner Routingtabelle?
- Wenn nein, Paket verwerfen
- Wenn ja, mit ARP die MAC des Gateways erfragen oder aus Cache lesen
- Frame von RouterC:

Ziel-MAC	00:01:ee:ee:
Quell-MAC	00:01:dd:dd:
Quell-IP	192.168.2.10
Ziel-ip	172.16.0.4

- RouterE nimmt Frame in Empfang und behält nur das Layer3-Paket (IP-Paket).
- Habe ich für das Netz der Ziel-IP eine Route in meiner Routingtabelle?
- Wenn nein, Paket verwerfen
- Wenn ja, mit ARP zugehörige MAC erfragen oder aus Cache lesen
- Frame von RouterE:

Ziel-MAC	00:01:bb:bb:
Quell-MAC	00:01:ff:ff:
Quell-IP	192.168.2.10
Ziel-ip	172.16.0.4