Walther-Rathenau-Gewerbeschule Freiburg

Negative Binärzahlen

Zweierkomplement

Fach: ITS	Gruppe:	
6. Oktober 2022		
Name:		
Klasse: E1IT	Seite 1	
Punkte:	Note:	

1 Binär und Dual

Die Begriffe Binärzahl und Dualzahl bedeuten exakt das Gleiche, sie sind also synonym. D.h. **Binärsystem = Dualsystem = 2er-System**.

2 Rechnen mit Zahlen fester Bitlänge

Eine Addition zweier Binärzahlen lässt sich mit einer Hardwareschaltung sehr leicht durchführen. Um auch subtrahieren zu können, werden negative Dualzahlen auf eine bestimmte Weise dargestellt.

2.1 Invertieren einer Binärzahl

Beim Invertieren einer Binärzahl wird jedes einzelne Bit invertiert, d.h. aus einer 1 wird 0 und umgekehrt.

Dargestellt wird das durch einen Überstrich über die zu invertierende Zahl.

Invertiere folgende Dualzahlen (piece of cake):

n	$\frac{\mathcal{E}}{\overline{n}}$
0000 0000	
1111 1111	
0101 1010	

2.2 Addition zweier Dualzahlen

Zwei Dualzahlen können bitweise addiert werden, wenn man den Übertrag in die nächste Stelle berücksichtigt. Dabei gilt:

$$0+0=0$$
 Übertrag 0
 $0+1=1$ Übertrag 0
 $1+0=1$ Übertrag 0
 $1+1=0$ Übertrag 1
 $1+1+1=1$ Übertrag 1

Addiere folgende Dualzahlen. Dabei wird soll der Übertrag in die 9te Stelle einfach ignoriert werden.

0000 0000	
1101 0010	
0100 1101	
1101 0010	
0101 1010	
1010 0101	
1111 1111	
0000 0001	

2.3 Einserkomplement

Das Einserkomplement einer Zahl ist die bitweise invertierte Zahl. Addiere zu folgenden Zahlen jeweils ihr Einserkomplement:

0000 0000	
0100 1101	
0101 1010	
1111 1111	

2.4 Zweierkomplement

Das Zweierkomplement (ZK) einer Zahl ist das Einserkomplement der Zahl plus 1:

$$n_{ZK} = \overline{n} + 1$$

Addiere folgende Zahlen zu ihrem Zweierkomplement. Als Zwischenschritt soll das Einserkomplement (EK) gebildet werden. Auch hier gilt: Überträge in die 9te Stelle ignorieren.

	0000 0000
EK	
ZK	
Zahl+ZK	
	0100 1101
EK	
ZK	
Zahl+ZK	
	0101 1010
EK	
ZK	
Zahl+ZK	
	1111 1111
EK	
ZK	
Zahl+ZK	

3 Negative Dualzahlen

Welchen Wert erhält man, wenn man eine beliebige n-Bit lange Zahl zu ihrem Zweierkomplement addiert und nur die letzten n-Bit vom Ergebnis behält?

Wie werden also negative Binärzahlen fester Bitlänge (8/16/32/64 je nach Prozessor) innerhalb einer CPU dargestellt?